2022

Search Academic Publications

Convection Self-Aggregation in CNRM-CM6-1: Equilibrium and Transition Sensitivity to Surface Temperature

Coppin D. and Roehrig R. 2022. Convection Self-Aggregation in CNRM-CM6-1: Equilibrium and Transition Sensitivity to Surface Temperature. Journal of Advances in Modeling Earth Systems. 14(12), pe2022MS003064. DOI: 10.1029/2022MS003064.

Pathfinder v1.0.1: A Bayesian-Inferred Simple Carbon-Climate Model to Explore Climate Change Scenarios

Bossy T., Gasser T. and Ciais P. 2022. Pathfinder v1.0.1: A Bayesian-Inferred Simple Carbon-Climate Model to Explore Climate Change Scenarios. Geoscientific Model Development. 15(23), pp.8831-8868. DOI: 10.5194/gmd-15-8831-2022.

Early Development and Tuning of a Global Coupled Cloud Resolving Model, and its Fast Response to Increasing CO2

Mauritsen T., Redler R., Esch M., Stevens B., Hohenegger C., Klocke D., Brokopf R., Haak H., Linardakis L., Röber N. and Schnur R. 2022. Early Development and Tuning of a Global Coupled Cloud Resolving Model, and its Fast Response to Increasing CO2. Tellus A: Dynamic Meteorology and Oceanography. 74(1), pp.346–363. DOI: 10.16993/tellusa.54.

Trade Wind Boundary Layer Turbulence and Shallow Precipitating Convection: New Insights Combining SAR Images, Satellite Brightness Temperature, and Airborne In Situ Measurements

Brilouet P.-E., Bouniol D., Couvreux F., Ayet A., Granero-Belinchon C., Lothon M. and Mouche A. 2023. Trade Wind Boundary Layer Turbulence and Shallow Precipitating Convection: New Insights Combining SAR Images, Satellite Brightness Temperature, and Airborne In Situ Measurements. Geophysical Research Letters. 50(2), pe2022GL102180. DOI: 10.1029/2022GL102180.

Strong Cloud-Circulation Coupling Explains Weak Trade Cumulus Feedback

Vogel R., Albright A.L., Vial J., George G., Stevens B. and Bony S. 2022. Strong Cloud-Circulation Coupling Explains Weak Trade Cumulus Feedback. Nature. 612(7941), pp.696-700. DOI: 10.1038/s41586-022-05364-y.

Scientific Data from Precipitation Driver Response Model Intercomparison Project

Myhre G., Samset B., Forster P.M., Hodnebrog Ø., Sandstad M., Mohr C.W., Sillmann J., Stjern C.W., Andrews T., Boucher O., Faluvegi G., Iversen T., Lamarque J.-F., Kasoar M., Kirkevåg A., Kramer R., Liu L., Mülmenstädt J., Olivié D., Quaas J., Richardson T.B., Shawki D., Shindell D., Smith C., Stier P., Tang T., Takemura T., Voulgarakis A. and Watson-Parris D. 2022. Scientific Data from Precipitation Driver Response Model Intercomparison Project. Scientific Data. 9(1), p123. DOI: 10.1038/s41597-022-01194-9.

The IPCC Sixth Assessment Report WGIII Climate Assessment of Mitigation Pathways: From Emissions to Global Temperatures

Kikstra J.S., Nicholls Z.R.J., Smith C.J., Lewis J., Lamboll R.D., Byers E., Sandstad M., Meinshausen M., Gidden M.J., Rogelj J., Kriegler E., Peters G.P., Fuglestvedt J.S., Skeie R.B., Samset B.H., Wienpahl L., van Vuuren D.P., van der Wijst K.I., Al Khourdajie A., Forster P.M., Reisinger A., Schaeffer R. and Riahi K. 2022. The IPCC Sixth Assessment Report WGIII Climate Assessment of Mitigation Pathways: From Emissions to Global Temperatures. Geoscientific Model Development. 15(24), pp.9075-9109. DOI: 10.5194/gmd-15-9075-2022.

The Role of Remaining Carbon Budgets and Net-Zero CO2 Targets in Climate Mitigation Policy

Dickau M., Matthews H.D. and Tokarska K.B. 2022. The Role of Remaining Carbon Budgets and Net-Zero CO2 Targets in Climate Mitigation Policy. Current Climate Change Reports. 8(4), pp.91-103. DOI: 10.1007/s40641-022-00184-8.